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We have studied the qualitative behavior of acoustic oscillations in a combustion cham- 
ber containing a dynamic absorber. A simple model has been constructed, which describes the 
forced one-dimensional oscillations. Target functions are proposed, and their behavior is 
examined in relation to the absorber's control parameters. The absorber may increase the 
scope for self-excited oscillations. The optimal frictional coefficient in the absorber has 
been determined for certain target functions. There is an optimal frictional coefficient 
for each of the proposed functions. 

An acute problem in rocket design is to prevent acoustic oscillations in combustion 
chambers. The characteristic difficulties are that one has inexact information on the main- 
flow parameters, nonlinearity, and uncertainty over the oscillation source. Consequently, a 
numerical study of the oscillation equations is undesirable because they are highly approxi- 
mate. This gives importance to qualitative studies on those oscillations. 

Helmholtz resonators are the most effective and common absorbers for acoustic oscilla- 
tions in chambers or other closed volumes, but in some cases such an absorber can increase 
the tendency to oscillate, so it is important to choose the optimum parameters of a dy- 
namic absorber correctly. We are not aware of any papers dealing with optimizing dynamic 
absorbers with allowance for the entire chamber. 

Figure 1 shows a typical scheme for using a dynamic absorber, in which 1 is the Helmholtz 
resonator, while 2 is the amplitude of the pressure oscillations on the fundamental longitudi- 
nal mode. There is a sharp turn in the main flow near the nozzle, and there is complete 
acoustic-wave reflection from it. The oscillations are considered as longitudinal acoustic 
ones due to oscillation in the rear wall. The oscillations in the resonator are simulated 
from a mechanical analogy: a load attached to a spring with a viscous damper. The damping 
behavior for load with spring and direct action on the load has been examined in [i-3]. De- 
tailed studies have been made [2, 3] on a dynamic absorber for a mechanical discrete system 
(coupled pendulums). In [3], the absorber is considered from the one-dimensional theory for 
direct action without allowance for the oscillations in the chamber. 

Target-function choice is important for absorber optimization. The form of tile function 
is governed by the physical content. We propose functions that enable one to select optimal 
parameters for dynamic absorbers for longitudinal acoustic oscillations. Numerical tests have 
been done on these and we have determined the trends in absorber performance as the control 
parameters are varied. The oscillation amplitude in the chamber and in the absorber may be 
derived explicitly. Absorber parameters have been determined for which the damping of the 
free oscillations in the chamber is maximal. 

i. Piston with Spring as Absorber: Formulation. Consider a chamber with unit cross- 
sectional area and length L, at one end of which there is a source of pressure oscillations 
with a known frequency ~ and given amplitude ~A (Fig. 2). A is the maximum deflection of the 
chamber wall, which bears the source, from the mean position. At the other end of the chamber, 
these oscillations are damped by an absorber that consists of a piston with mass m on a 
spring having elasticity k and with frictional coefficient e. Let x be the coordinate axis 
directed along the chamber and having its origin at one of the ends (Fig. 2), while ~(x, t) 
is the velocity potential of the gas particles in the acoustic wave and A the deviation of 
the piston from the equilibrium position. The wave propagation is described by 

r162 = O, ( i . i )  
in which c is the speed of sound in the gas, ~xx the second derivative with respect to x, and 
~tt the second derivative with respect to time t. The source lies at the rear wall at the 
chamber, at which the condition for equal velocities is met: 
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Fig. 1 Fig. 2 

~x (L, t) = mA cos (m0- ( 1 . 2 )  

L e t  t h e  g a s  h a v e  d e n s i t y  p a t  r e s t .  The p i s t o n ' s  o s c i l l a t i o n s  a r e  d e s c r i b e d  by 

mA,, + a A , +  kA = p~,. ( 1 . 3 )  

Here Att is the acceleration, A t the speed, Pet the force exerted on the piston by the os- 
cillating gas, and ~A t the frictional force acting on the piston. Also, the kinematic con- 
dition for equal velocities should be met at the piston: 

= ~x (0, 0. (1.4) 

We introduce the dimensionless dependent variables 

A* = A / A ,  ~*(x , t )  = �9 ( x , t ) / ~ A L .  

Then ( 1 . 1 ) - ( 1 . 4 )  become 

�9 ~ - ~/c ~ = o, .~ (L, t) = cos (~t)/L, (1.5) 

mA,~ + e a t  + kA* = L~p~7 (0, t), At = Lo)~ (0, t). 

If the oscillations are in the steady state, one can assume that 

�9 * (x, 0 = Re { [ r e x p  ( ~ / c )  + Z exp ( - ~ / c )  ] exp ( i~0},  

A* = R e  IX exp( ioO] ,  

in which X, Y, and Z are the complex amplitudes of the corresponding oscillations or waves, 
X being the piston's oscillation amplitude, Y the amplitude of the wave traveling from the 
source in the direction opposite to the x axis, and Z the amplitude of the wave reflected 
from the left-hand end of the chamber and traveling along the x axis (Fig. 2), while i is 
the imaginary unit. The unknowns X, Y, and Z are derived from (1.5) by solving the inhomo- 
geneous linear system 

Y e x p ( i ~ / ~ O  - Z e x p ( - i ~ / ~  = ( - i ~ d / ~ ,  ( 1 . 6 )  

(--1 + l a * / ~  + os~/~2) X - l~ (Y  + Z) = O, X - (o=/~c)  ( Y -  Z) = O. 

For  c o n v e n i e n c e ,  we i n t r o d u c e  a d d i t i o n a l  s y m b o l s :  l e t  ~p = ( k / m )  1/2 be  t h e  f r e q u e n c y  
of the undamped oscillations of the free piston, mc = c~/L the fundamental for the acoustic 
oscillations in the chamber, M = Lp the mass of gas in the chamber, and ~ the ratio of the 
mass of gas in the chamber to the piston's mass: ~ = M/m, ~* = ~/m. 

The fundamental frequency in the piston and chamber is mc, the frequency of the natural 
oscillations in the chamber, so more convenient symbols are 

Then (1.6) becomes 

o~ = OJc(1 + x), OJp = c%(1 + o). 

Y exp (imx) - Z exp (-tin• = i/(1 + • ~, 

w X - i ~ ( 1  + •  = 0 ,  X -  ((I + •  = 0 .  
( i . 7 )  

Here and subsequently, ~ = a*/m c = a/mmc; w=-(l +• +• +(I +o) 2. In these symbols, 
the solution to (1.7) is 

y-__ 

Z= 

X = 
i~(l +• 

awsin (a.~) + iz(l + • cos (ax) ' 
[~w+ i~(I  + x)] ( 1 . 8 )  

2,~(I + X) [~wsln(ax)  + i  x ( l  +•  ' 

l~w -- i~, (] + • 
2 a  ( !  + •  [~twsin ( a x )  + i ~ (1 + ~) cos  ( ~ ) ]  " 
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If the piston's mass is much greater than the mass of gas in the chamber, ~ = 0, and the 
waves are reflected from the piston as from an elastic wall. To simulate real structures, 
should be quite small, since most of a planar longitudinal wave will be reflected from the 
bottom of the chamber. That reflection is simulated by a large piston mass. Consequently, 
is very small for real structures (D ~ 0). Let v=(l +o) ~-(I +• w=v+i~(l +• ; then (1.8) 

becomes 

X =  i~,(~ +x) 
rt [v + i&(I +•  sin(n• + ~,(1 + •  

y = _ _  [~v + i (~& + , )  (1 + • 
2x (1 + x) [av sin (xx) + p. (1 + • cos (n• + in& (I + x) sin (n• ' 

{n,, + i (n& - ~) 0 + • 
Z = z~ (~ + • [~,. s~. (~• + ~, (~ + • cos (:~• + iM ( f +  x) sin (n• " 

It is convenient to separate the real 
sin(~• +•215 b= ~&(l +•215 
then 

and imaginary parts of the solution. Let a = Imp x 
c=(3&+~)(1+x) ,  d = ( 3 & - # ) ( I  + •  [ I /2=( I+•  

[av+ icl [~  + ic] [a - ib] [ [~wa + bcl [ac - ~b] ]  
Y =  F [a + ib------~ = F [a + ib] [a -  ib] =F[7-.;-j +iT;-7 ]' 

[ ~  + in] [ ~  + ia] [~ - ibl [ [ ~ a  + t~I I ,~ - ~ t ,1 ]  
Z =  F [a+ ib-----7= F [a+ ib] i a - ib ]  = F [ - 7 + b T  + i  a 2 - - ~ - ~ ] .  

^ 

As a c = a ( ~ t & + ; ~ ) ( 1  + •  a d = a ( : t & - F t ) ( 1  + •  b 2 = J  [ 3 ( 1  + x )  s i n ( x •  2, b c = 3 & s i n ( 3 •  +•  

bd = n& s i n  ( 3 •  ~ ) (1  + •  i t  i s  m o r e  c o n v e n i e n t  t o  w r i t e  t h e s e  e x p r e s s i o n s  a s  

Y = F [ -rwa+nd'xsin(X• +• + b 2 + : i 7 - ~  ~ " ' 

Z = F [nva  + :t& sin (n• (a& - ~t) (1 + • ia (~tE - ~t) (1 + x) - rt2v& (1 + x) sin ( ~ ) ]  , 

a 2 + b 2 + a 2 + b 2 j " L 
If U = 0, then 

[ ~  + in& (1 + • 
Y =  

2~ (l  + • 1~ + i M  0 + x)] sin (n• ' 

[~v + ia~ (1 + • 
Z =  2n 0 + • [av + in& (1 + • sin (~t• " 

Here ~ = 0 means that the piston's mass is much greater than the mass of the oscillating 
gas. The resonant frequencies for the forced oscillations coincide with the natural frequen- 
cies of the chamber ~ = 0. 

If the piston's oscillations occur without friction (~ = 0), the natural oscillations 
in the chamber will occur at a somewhat different resonant frequency. The oscillation ampli- 
tudes are 

[~ + ~0+• Y= 
2 x ( 1  + • 2 1 5  ' 

1~ + ~(l+x)] 
Z= 

2 n ( l  + • 2 1 5  + •  " 

Let a = 0, which means that the free oscillations of the piston on the spring coincide with 
the natural oscillations of the gas in the chamber. Resonance effects occur in the chamber 
for w = mc(l + • as the frequency of the driving force if for • we have 

[1 - (1 + • sin (~• + ~ (1 + x) cos (3•  = 0. 

The following approximate expression for the resonant values of,• applies for small• 
and ~: 

~• n • 
• = ~ ~ ~ • 

In a real chamber, ~ is quite small, so the expression for the resonant x is sound from 
the physical viewpoint. The most important point here is that there are two resonant 

671 



frequencies. This means that a resonator in the chamber may result in an acoustic oscilla- 
tion because the two closely spaced resonant frequencies for the chamber increase the scope 
for frequency pulling by hydrodynamic sources [4]. 

One can optimize the dynamic absorber by varying ~, o, and ~; these three are the con- 
trol parameters. Parameter x corresponds to the frequency of the source in the chamber and 
is freely adjustable. It is necessary to introduce target functions as well as to determine 
the control and free parameters. 

The frequency of the forced oscillations in a chamber in general is controlled by a 
nonlinear mechanism, so x should be sufficiently free or independent of the control para- 
meters. Moreover, one can say that x is chosen for the worst case for certain target func- 
tions. 

2~ .... Target Functions. The main oscillation sources in a chamber are due to hydrody- 
namic instability in the main flow, and the acoustic oscillations govern the self-synchron- 
ization in the source on account of the hydrodynamic instability or some other nonlinear 
mechanism [4]. A piston with spring is placed in the chamber to weaken the acoustic feed- 
back, which produces the self-synchronization in the source and thus to lengthen or eliminate 
the oscillation build-up time. 

The target functions are related to the physical and technical content. They may be 
the acoustic energy, the reflected-wave amplitude, the difference between the acoustic pres- 
sures at the opposite walls, the maximum damping coefficient, and so on. 

A~ Acoustic Energy. ~ The acoustic energy E in the chamber is given bythe velocity poten- 
tial [6, 7]: 

L 

E (t) = (1/2)  f Po [[@x (x, 0[ 2 + I@~ (x, 01~/(c2)] dx. 

To calculate E, one needs to represent that potential by means of complex amplitudes. The 
I~x(X, t) I and l~t(x, t)[ are calculated from X, Y, and Z. As we have 

A* = A / A ,  @*(x, 0 = ~ ( x , t ) / ~ A L ,  A* = Re [Xexp( i~t ) ] ,  

�9 * (x, t) = Re {[Yexp ( ixw/c)  + Z exp ( - l x o / c )  ] exp (i~0}, 

the velocity potential and its derivatives are written as 

(x, t) = ~ A L  Re { [Yexp ( i x~ / c )  + Z exp ( - ~ o / c )  ] exp (i~t)}, 

@x (x, t) = ~ A L  Re {( i~/c)  [Yexp ( ~ / c )  - Z exp ( - ~ / c )  ] exp (i~t)}, 
�9 , ( x ,  t) = ~ A L  Re {(io) [Yexp ( i x~ /c )  + Z exp ( - i x ~ / c )  ] ex.p (i~O}- 

It is convenient to consider the oscillation amplitude as a function of t'ime at a fixed 
instant t, instead of ~(x, t) or its derivatives, that time being such that exp (imt,) = i. 
Then ~(x) = r t,), ~x(X) = ~x(X, t,), ~t(x) = Ct(x, t,). The acoustic energy is 

L 

o, = (I/2) f po + l.,(x)l'/(:)] dx. (2.1) 
o 

To calculate E as a function of the control parameters, we substitute the (1.8) ampli- 

tudes into (2.1). 

The absorber is optimized by choosing ~, ~, and o such that the acoustic energy in the 
oscillations E(~,$t,o, x, ~) is least for a certain set of x values. Equally important for 
applications is the dependence of the energy on the control parameters. A numerical study 
was made on an example to elucidate the mechanical meaning of the resonant absorber parameter 
interaction. We examined the acoustic energy in relation to forced oscillation frequency, 
which is described by the dimensionless parameter x, and the absorption coefficient &. 

Let the ratio of the gas mass to the piston mass remain constant and let the frequency 
of the free oscillations in the resonant absorber m o coincide with the frequency of the 
acoustic oscillations in the chamber mc = mp = ~c(l-+ a), so o = 0. For convenience we can 
assume that L = w and A = I. In real cases, the frequency of the forced oscillations in 
the chamber differs little from the natural frequency, so one can assume that I• ~I and 
also that V is quite small, since in a real structure much of the acoustic energy is re- 
flected from the front wall (Fig. i). For example, one can take ~ = 0.01. As ~ and x are 
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A E(a,~,~) /I 

Fig. 3 

quite small, the approximate expressions for a and b apply, which are derived by Taylor- 
series expansion of the corresponding quantities up to the order of x~: 

a = [ x v s i n ( ~ •  + ~ ( 1  + x) c o s ( ~ •  = ~ + ~•  - ~ 2 ( ~  + 4) x2 /2 ,  

b = ~ ' ( 1  + • 2 1 5  +x),  " v : - •  2. 

Then Y and Z are  given by 

Z = F I ~ + F •  2 ( ~ + 4 )  z2/212+ [ 2g• +• " 

We use these to examine the acoustic energy numerically for small & and x , the results being 
given in Figs. 3 and 4 for ~ = 0.01 with & and x in the ranges • and • correspondingly. 
The most important points are that: a) the two closely spaced resonant frequencies occur for 
the forced oscillations, b) there is effective suppression for the oscillations as ~ in- 
creases from zero (no absorption) to the optimum value, and c) as ~ increases further, the 
acoustic energy increases, and d) there is an optimal absorption coefficient. 

B. Reflected-Wave Amplitude. Here one selects the absorber's parameters such that IZI, 
the amplitude of the wave reflected from the chamber wall opposite the source, is minimal, 
while Z is the complex amplitude of the wave reflected from the absorber: 

Z = l~+i(~&-.-~<l +• 
2x (1 + x) [ ~  sin (a• + ~'ii + • c<~ (a• + i~ ' (I  + x) sin (a,x)]" 

For this target function, the resonant frequencies of the forced oscillations are the same as 
those for the acoustic energy in the chamber. For small ~ and ~ with V = 0.01, we examined 
the reflected-wave amplitude numerically. Figure 5 shows results for Ix I < 0.I and I~I < 0.i. 
Identical qualitative behavior occurs for the energy and the reflected amplitude for small 
control-parameter values. The conclusions are as for the previous target function. 

C. Pressure Difference a t Opposite Walls. Here one chooses the control parameters such 
that the pressure difference at the opposite walls will be minimal. The complex pressure force 
P(0) on the left-hand wall x = 0 (Fig. I) on the spring side is represented as 

P (0) = - ( i a ~ ,  + k ) A X .  

The pressure force on the front wall P(0) is composed of the frictional force and the spring 
deformation force. The pressure force P(L) on the real wall is equal to the pressure force 
from the acoustic wave: 

P (L)  = -ipo,,~ (L )  = im~pAL (Y + Z). 

The complex oscillation amplitude is equal to the pressure difference AP = P(L) - P(O): 
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Fig. 4 

IZl 

Fig. 5 

AP = P (L) - P (0) = ( f ~ ,  + k) A X  + [ ~ p A L  (Y  + Z). 

The absolute value for the oscillation amplitude in the pressure difference is 

l a P [  = t ( i a ~ .  + k) AX + i ~ p A L  (Y + Z)[ .  

This formula has been examined numerically (Fig. 6) from (1.8) for o = 0, ~ = 0.01, and 
small values of • ~ ([• 0.i, l&[ < 0.i). As for the previous target functions, the 
pressure difference has two resonant peaks for the two values of the resonant frequency. 
There is no qualitative difference from the previous target functions. 

3. Maximal Damping Coefficient. Another way of absorber optimization is to choose the 
control parameter such that the damping over time in (1.1)-(1.4) (without the oscillation 
source, A = O) is maximal. Here it is assumed that oscillations arise in the chamber close 
to the longitudinal mode in the natural oscillations, and one examines their behavior over 
time. The oscillations in the resonant chamber--dynamic absorber system are described by 
(1.1)-(1.4.) for the unknown functions ~(x, t) and A(t). Here we have incorporated the fol- 
lowing: i) the equation for acoustic-wave propagation in the chamber, 2) the condition for no 
flow at the right-hand wall of the chamber x = L, 3) Newton's law for the piston, and 4) the 
condition of no flow at the piston, namely equal velocities for the piston and gas particles: 

~-~/c2=0, @~(L, t) = O, (3.1) 

mA~ + a A , +  kA = p ~ t ( O , t ) ,  A~ = ~ ( O , t ) .  

Let the oscillations occur with a frequency close to the natural frequency of the oscillations 
in the chamber and with a certain small damping. Then the oscillations are described by a 
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Fig. 6 

complex frequency, whose imaginary part describes the damping over time. Absorber parameter 
optimization here is such as to produce maximum damping. Let ~(x, t) and A(t) describing the 
oscillations of the gas and piston take the form 

(x, t) = Re [~ (x) exp (ioJt) 1 = e x p  ( - I m  oJt) Re [~ (x) exp (i Re ~t) 1, ( 3 . 2 )  

A (t) = Re [A exp (ioJt) ] = exp ( - I ra  o~t) Re [A exp (t Re o~0]. 

The imaginary part of ~ describes the damping rate in the chamber. It is convenient to assume 
that ~ differs little from ~c (w = ~c + 6~), with 6~ taken as quite small (6~ = 61 + i~2). 
Equation (3.2) enables us to write (3.1) as 

�9 ~ - ~of/? = 0, q~x (L) = 0, ( 3 . 3 )  

~u~mA + icoaA + kA = ieop~ (0), io~A = ~ (0). 

Absorber optimization involves selecting the control parameters in (3.3) to be such that 62 
is as large as possible. Let 

A = X, �9 (x) = Y exp (icoL/c) + Z exp ( - io~L/c ) .  

By v i r t u e  o f  ( 3 . 3 ) ,  X, Y, and Z s a t i s f y  

Y e• (ie~L/c) - Z exp (- ioJL/c)  = O, ( 3 . 4 )  

( - ~ 2 m  + io~ct + k) X - io~ 9 ( Y  + Z) = O, X - ( Y -  Z ) / c  = O. 

This system has nontrivial solutions only for those w (complex eigenvalues) for which the 
determinant of this system is 0. The complex eigenvalues are the solutions to 

det (M) = -ic~pc ! 1 + exp ( 2i ,~L/ c) l + ( -rn~2 + ie~e~ + k) [1 - exp ( 2 i ~ L /  c) ] = O, 

which is equivalent to 

~ c l [ o f  - 4 -  io~ ( a / m ) l  = (re~p) tg  (o~L/c). ( 3 . 5 )  

For zero friction (a = 0), the (3.5) solutions may be derived graphically. The friction is 
assumed quite small. The representation ~ = ~c + ~ enables one to linearize (3.51) with re- 
spect to the small quantity 6~. The solution to the iinearized equation is 

The real and imaginary components of the (3.5) solution, linearized with respect to ~, are 

5~ = I m  (5o~) = c ~ (p/m) O.?c(a/m)/2L [ ( ~ -  o~) ~ + (a/rn)~a~z]. 

The l a r g e s t  d a m p i n g  o c c u r s  when t h e  f r i c t i o n  i n  t h e  a b s o r b e r  i s  

= 

Optimal absorber friction has been confirmed by experiment [8], and methods of increasing 
it have been described. 
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4. Conclusions. i. A dynamic absorber is effective in producing coincidence between 
the natural frequencies and a certain optimum value for the coefficient of friction. 2. For 
small coefficients of friction, the dynamic absorber may give rise to oscillations because 
the chamber with absorber has two similar resonant frequencies, and this extends the scope 
for oscillation frequency pulling. 3. With large coefficients of friction, the absorber in 
the chamber may be ineffective. 
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